Rhizobium sp. strain TAL1145 do not differ on determinate- and indeterminate-nodulating tree legumes

نویسندگان

  • Nikhat Parveen
  • David T. Webb
  • Dulal Borthakur
چکیده

Three classes of exopolysaccharide (EPS) defective mutants were isolated by Tn3Hogusinsertion mutagenesis of Rhizobium sp. strain TAL1145, which nodulates tree legumes. The class I and class III mutants produced 10-22% of the EPS produced by TAL1145 and appeared partially mucoid while the class II mutants formed small, opaque and non-mucoid colonies. Size-fractionation of the soluble EPSs made by these mutants in the culture supernatant indicated that the class I and the class III mutants produced reduced levels of both highand low-molecular-mass EPSs while the class II mutants lacked both these EPSs but produced a small amount of a medium-molecular-mass anthrone-reactive EPS. The succinyl and acetyl substituents observed in the TAL1145 EPS were absent in the EPS of the class II mutants. When examined under UV, the class I and class III mutants grown on Calcofluor-containing YEM agar showed dim blue fluorescence, compared to the bright blue fluorescence of the wild-type strain, whereas the class II mutants did not fluoresce. While the dim blue fluorescence of the class III mutants changed to yellow-green after 10 d, the fluorescence of the class I mutants did not change after prolonged incubation. Unlike the EPS-defective mutants of other rhizobia, these mutants did not show different symbiotic phenotypes on determinateand indeterminate-nodulating tree legumes. The class I and the class III mutants formed small ineffective nodules on both types of legumes whereas the class II mutants formed normal nitrogen-fixing nodules on both types. The genes disrupted in the class I and class III mutants form a single complementation group while those disrupted in the class II mutants constitute another. All the three classes of EPS-defective mutants were located within a 10.8 kb region and complemented by two overlapping cosmids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pyd genes of Rhizobium sp. strain TAL1145 are required for degradation of 3-hydroxy-4-pyridone, an aromatic intermediate in mimosine metabolism.

Rhizobium sp. strain TAL1145 degrades the Leucaena toxin mimosine and its degradation product 3-hydroxy-4-pyridone (HP). The aim of this investigation is to characterize the Rhizobium genes for HP degradation and transport. These genes were localized by subcloning and mutagenesis on a previously isolated cosmid, pUHR263, containing mid genes of TAL1145 required for mimosine degradation. Two str...

متن کامل

The mid genes of Rhizobium sp strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine.

Mimosine is a toxin present in the tree-legume leucaena (Leucaena leucocephala), including its root nodules and the root exudates. The leucaena-nodulating Rhizobium sp. strain TAL1145 degrades mimosine (Mid(+)) and utilizes it as a source of carbon and nitrogen. Twelve TAL1145 mutants defective in mimosine degradation (Mid(-)) were made through Tn3Hogus, TnphoA or kanamycin-resistance-cassette ...

متن کامل

Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis.

Symbiosis between legumes and Rhizobium bacteria leads to the formation of root nodules where bacteria in the infected plant cells are converted into nitrogen-fixing bacteroids. Nodules with a persistent meristem are indeterminate, whereas nodules without meristem are determinate. The symbiotic plant cells in both nodule types are polyploid because of several cycles of endoreduplication (genome...

متن کامل

High-Resolution Transcriptomic Analyses of Sinorhizobium sp. NGR234 Bacteroids in Determinate Nodules of Vigna unguiculata and Indeterminate Nodules of Leucaena leucocephala

The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephal...

متن کامل

BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.

BacA is an integral membrane protein, the mutation of which leads to increased resistance to the antimicrobial peptides bleomycin and Bac7(1-35) and a greater sensitivity to SDS and vancomycin in Rhizobium leguminosarum bv. viciae, R. leguminosarum bv. phaseoli, and Rhizobium etli. The growth of Rhizobium strains on dicarboxylates as a sole carbon source was impaired in bacA mutants but was ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002